
BlockSim: Blockchain Simulator
Miguel Correia

miguel.p.correia@tecnico.ulisboa.pt

Carlos Faria

carlosfigueira@tecnico.ulisboa.pt

IEEE Blockchain 2019

mailto:miguel.p.correia@tecnico.ulisboa.pt
mailto:carlosfigueira@tecnico.ulisboa.pt

Problems on the evaluation of blockchain systems

2

➔ Blockchain systems have received much interest both in research and
industry

➔ However, there is a clear lack of tools to evaluate these systems

➔ Emulation is the most used method; it reproduces the behaviour of a system
in a large number of machines

➔ Not scalable and energy efficient to evaluate large distributed systems

Simulation

3

➔ Network and distributed system simulators can evaluate the performance of
protocols in a large set of conditions

➔ Simulators simplify the implementation and deployment of existing or new
protocols/systems

➔ Large-scale system can be study with thousands of nodes in a single machine
and gather results in reasonable time

➔ Existing blockchain simulators are restricted to one implementation, not
having the flexibility to easily simulate other blockchain systems

Objectives

4

Provide a simulator capable of evaluating blockchains in different environment
conditions, enabling, thus, a richer understanding of this technology.

❏ Capable to run user defined simulation models

❏ Capable to run thousands of nodes on a single host

❏ Should provide an accurate representation of a real blockchain system

❏ Users should be capable to change the simulated environment conditions

❏ Simulation should be performed in reasonable time

❏ Capable to provide a report with the simulated results when concluded

 BlockSim

5

A flexible blockchain simulator to evaluate different implementations on large
scale networks

Chosen simulation models:

➔ Stochastic: works with probabilistic phenomena
E.g: probability distribution of: block interval or block size

➔ Dynamic: represents the system as it changes over a certain time frame

➔ Discrete-event: keeps track of system state changes at specific points in time

Following a mechanism of model abstraction we can attain flexibility in
simulating different types of blockchains

Solution

 Modelling of Random Phenomena

6

➔ Certain event could happen, but we do not know which particular outcome will happen

◆ But, we can observe a regular distribution of outcomes in a large number of repetitions

➔ Our models always intend to mimic the behaviour of the entities in real world

◆ E.g.: knowing the average block time interval on a public blockchain, its possible to

predict the next outcome with a degree of confidence

◆ By extrapolating a probability distribution for a given phenomena observed in a real

system

➔ In practical terms, we assembled a methodology to measure, collect, and extrapolate a
probability distribution that our models will use

Solution

 Modelling of Random Phenomena

7

To calculate the throughput when sending and receiving TCP packets between different geographic
locations, our procedure was:

1. Instantiate 2 instances on AWS on the desired geographic locations with iPerf3

2. Measure the throughput received and sent between each instance using iPerf3, at each hour,

for 24 hours

3. At the end of 24 hours, we collect the iPerf3 logs

4. We use the Kolmogorov–Smirnov test to know which distribution and its input parameters

that best fit the samples collected

5. The distribution name and its input parameters are then used by the simulator to extrapolate

the values of throughput between different geographic locations during the simulation

Solution

 Architecture

8

Solution

Component & Connector View of BlockSim:

 Discrete Event Simulation Engine (DESE)

9

Solution

➔ Management of the simulation clock

➔ Scheduling, queuing and processing events

➔ Control the access of resources by the entities

➔ Creation of blockchain system entities (nodes, blocks,

transactions)

➔ Process-based discrete-event engine

➔ Processes are based on Python generator functions

➔ All processes live in an environment and the interaction is through events

➔ Shared resources between processes can model limited capacity congestion points

Overall functionality

 Simulation World

10

Solution

Management of the simulation input parameters:
➔ Configuration file
➔ Delays
➔ Latency
➔ Throughput received and sent

Simulation World functionality:

world = SimulationWorld(
 duration,
 now,
 “input/config.json”,
 “input/latency.json”,
 “input/throughput-received.json”,
 “input/throughput-sent.json”,
 “input/delays.json”
)

network = Network(world.env, “ETH”)

miners = {
 'Ohio': {
 'how_many': 300,
 'mega_hashrate_range': "(20, 40)"
 }
}

non_miners = {
 'Tokyo': {
 'how_many': 100
 }
}

node_factory = NodeFactory(world, network)

nodes_list = node_factory.create_nodes(
 miners,
 Non_miners
)

world.env.process(network.start_heartbeat())

for node in nodes_list:
 node.connect(nodes_list)

transaction_factory =
TransactionFactory(world)

transaction_factory.broadcast(
 40,
 200,
 300,
 nodes_list
)

world.start_simulation()

Programmatic Interface

and Programmatic Interface

 Blockchain Modelling Framework

11

To model any blockchain implementation, we need to split it into submodels, creating an abstraction that does

not follow a specific implementation

Solution

These basic models can be extended to simulate specific blockchain implementations

12

Chain Model Consensus ModelNetwork Model Node Model

Mimic the behaviour of a chain:

- when adding a block, checks

if the block is being added to

the head; if the case, adds a

block to the chain. Otherwise,

the block is added to a queue

- when is not being added to

the head, and the previous

hash points to an old block, it

creates a fork on the chain by

creating a secondary chain.

Then, it checks if the block

should be the new head by

calculating the difficulty of

the chain. If this is the case, it

accepts the secondary chain as

the main chain

We do not perform block or

transaction validation, it adds

a delay that simulates the

validation process

It also defines a simple

equation to calculate the

difficulty of a new block:

It simplifies and resembles

ideas from Ethereum and

Bitcoin by incrementing the

difficulty of a block when it

is created in less time

Contains the state of each

node; build connection

channels; apply network

latency

Nodes are selected to

broadcast their candidate

block; Interval between each

selection is the time

between blocks

Nodes have a hash rate;

greater hash rate, greater the

probability of the node being

chosen

It also simulates the

occurrence of orphan

blocks

P2P network functionality

Origin node starts listening

for inbound communications

from a destination node; a

node can send a direct

message or broadcast a

message to all neighbours

It also apply a delay when

receiving and sending

messages, corresponding to

node throughput

This model is normally

extended to implement a

specific blockchain client

implementation

 Modelling Bitcoin

13

We can easily model the Bitcoin blockchain, by reusing the base models already created

Solution

Class diagram for the Bitcoin modelling

➔ Simulation World receives the block size limit and the

probability distribution for the number of transactions per block

➔ There are miner nodes and non-miner nodes

➔ Miner nodes: broadcast its candidate block to the network

(when selected by the Network)

Messages exchange in Bitcoin protocol between nodes in order to obtain a new
block

 Modelling Ethereum

14

Solution

Class diagram for the Ethereum modelling

➔ Simulation World receives the block gas limit and

start gas for every transaction

E.g.: if we set the simulation to have a block gas limit of

10,000, and for a transaction start gas of 1,000, then we

can fit 10 transactions

Messages exchange in Ethereum protocol between nodes in order to obtain a new
block

We do not perform any cryptographic operations or

validations; we only apply a delay corresponding to the

process of validation in a real system, which is previously

measured

Evaluation

15

1. Perform a verification and validation

of BlockSim running our Ethereum

models

2. Explore and evaluate real use cases

for BlockSim

16

1. Identify a question to be answered in or study:

2. Conceptualise the simple building models needed to answer the question

3. Determine the input parameters for the models:

block and transaction gas limit, message size, distribution of latency and throughput, etc.

4. Collect data from existing deployments for each input parameter

5. Code the conceptual models using the BlockSim Modelling Framework

6. Perform verification of the models

7. Validate if the models are an accurate representation of the real system

Evaluation Verification and Validation

How long it takes to propagate a block and a transaction from one node to another?

17

Evaluation Verification and Validation
To validate if the Ethereum models are an accurate representation of a real Ethereum system:

1. In the simulation we calculated the block and transaction propagation time between two nodes

2. Changed an Ethereum client reference implementation (Geth), to record the time when a block and

transaction is sent and received

3. Deployed a private Ethereum network using the changed Ethereum client in AWS EC2 instances

4. Collected the times from the two nodes and calculated the propagation time for a block and transaction

Following this process we validate the Ethereum models and also verify if BlockSim is working properly, by

comparing the results from the simulation with a real network

18

Evaluation Results for the Verification and Validation
Results for block propagation between Ohio and Ireland:

➔ Achieved exact same average in the real Ethereum

network compared to the simulation

➔ Simulation has slightly low values for standard deviation

compared to a real network

◆ expected because our network model does not consider

packet loss, routing and other variations that influence

packets deliver in a wide area network (WAN)

Block propagation between Ohio and Ireland

19

Evaluation Results for the Verification and Validation
Results for transaction propagation between Ohio and Ireland:

➔ Achieved exact same average and standard deviation

Conclusion

BlockSim runs our Ethereum models presenting an accurate

representation of an Ethereum system with regards to block

and transaction propagation
Transaction propagation between Ohio and Ireland

20

Evaluation Use Cases
➔ We used BlockSim to study 4 use cases

➔ For each use case, we created 8,000 transactions with a total of 400 nodes

◆ 300 non-miner nodes across Tokyo, Ireland and Ohio

◆ 100 miners across Ireland, Ohio and Tokyo

➔ 1 PC with 2 GHz Intel Core i7; 8 GB RAM

Input parameters for the BlockSim

 Use Case #1: Simplified New Block Delivery

21

➔ We model a new message exchange protocol, used to obtain a new mined block

➔ Request the full blocks (headers and bodies) when the message NewBlockHashes is received

➔ To adapt our model, we created 2 new network messages (GetBlocks; Blocks) and adapt our

Ethereum node model

➔ 27.9% decrease in block propagation time

Evaluation

Average block propagation with simplified new block delivery
between Tokyo and Ireland

 Use Case #2: One Transaction Propagation

22

➔ There are inefficiencies in the blockchain network layer:
◆ Transactions are first propagated between nodes, and then a full block when it is mined, that

contains the previously propagated transactions
◆ It requires each transaction to be transmitted twice

➔ We can rely on a reconciliation protocols: nodes only fetch transactions that they do not own in a
newly mined block

➔ 29.2% decrease in block propagation time (simulation time: 22 minutos and 10 seconds)

Evaluation

Average block propagation with one transaction propagation between
Tokyo and Ireland

 Use Case #3: Different Block Gas Limits

23

➔ Block propagation time impact when increasing the block gas limit

➔ For each execution, we change the value of block gas limit, adding more transactions per block

➔ Standard Ethereum transaction has a 21,000 gas limit, with a size of ~200 Bytes

Successfully simulated in 36 minutes and 21 seconds:

➔ 20 kB block size grow between each execution (corresponds to an additional 100 transactions)

➔ For each execution, an increasing propagation time of ~10 ms

Evaluation

Results for average block propagation with different block gas limit between Tokyo and Ireland

 Use Case #4: Encrypted Network Messages

24

➔ Block propagation time impact when a node encrypts and decrypts all the network messages

➔ Node receives 4 messages: Status, NewBlockHashes, BlockHeaders and BlockBodies, and sends 2

messages: GetBlockHeaders and GetBlockBodies

➔ We have added to our basic node model a fixed delay when receiving and sending a network

message

➔ 25.8% increase in block propagation time, with a encryption delay of 50 ms

➔ 51.6% increase in block propagation time, with a delay of 100 ms

Evaluation

Results for average block propagation with different block encryption and decryption delay between Tokyo and Ireland

Final conclusions

25

➔ Blockchain systems are complex distributed systems

➔ There is a broad interest in developing methods to evaluate these systems

➔ First effort to provide a blockchain simulator that is not restricted to a concrete
blockchain implementation and can be used to model different blockchain systems

➔ Run thousands of nodes and transactions in a single host in reasonable time

➔ We have shown an accurate representation of the Ethereum system and how easy it
was to change the simulated environment conditions and models to study peculiar use
cases

Thank you

Carlos Faria
carlosfigueira@tecnico.ulisboa.pt

BlockSim is available at https://github.com/BlockbirdLabs/blocksim

mailto:carlosgueira@tecnico.ulisboa.pt
https://github.com/BlockbirdLabs/blocksim

